Author:
Grohe Martin,Lindner Peter
Abstract
Probabilistic databases (PDBs) model uncertainty in data in a quantitative
way. In the established formal framework, probabilistic (relational) databases
are finite probability spaces over relational database instances. This
finiteness can clash with intuitive query behavior (Ceylan et al., KR 2016),
and with application scenarios that are better modeled by continuous
probability distributions (Dalvi et al., CACM 2009).
We formally introduced infinite PDBs in (Grohe and Lindner, PODS 2019) with a
primary focus on countably infinite spaces. However, an extension beyond
countable probability spaces raises nontrivial foundational issues concerned
with the measurability of events and queries and ultimately with the question
whether queries have a well-defined semantics.
We argue that finite point processes are an appropriate model from
probability theory for dealing with general probabilistic databases. This
allows us to construct suitable (uncountable) probability spaces of database
instances in a systematic way. Our main technical results are measurability
statements for relational algebra queries as well as aggregate queries and
Datalog queries.
Publisher
Centre pour la Communication Scientifique Directe (CCSD)
Subject
General Computer Science,Theoretical Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献