Generative Datalog with Continuous Distributions

Author:

Grohe Martin1ORCID,Kaminski Benjamin Lucien2ORCID,Katoen Joost-pieter1ORCID,Lindner Peter1ORCID

Affiliation:

1. RWTH Aachen University, Aachen, Germany

2. Saarland University, Saarland Informatics Campus, Germany and University College London, London, United Kingdom

Abstract

Arguing for the need to combine declarative and probabilistic programming, Bárány et al. (TODS 2017) recently introduced a probabilistic extension of Datalog as a “purely declarative probabilistic programming language.” We revisit this language and propose a more principled approach towards defining its semantics based on stochastic kernels and Markov processes—standard notions from probability theory. This allows us to extend the semantics to continuous probability distributions, thereby settling an open problem posed by Bárány et al. We show that our semantics is fairly robust, allowing both parallel execution and arbitrary chase orders when evaluating a program. We cast our semantics in the framework of infinite probabilistic databases (Grohe and Lindner, LMCS 2022) and show that the semantics remains meaningful even when the input of a probabilistic Datalog program is an arbitrary probabilistic database.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference69 articles.

1. Serge Abiteboul, Richard Hull, and Richard Vianu. 1995. Foundations of Databases (1st ed.). Addison-Wesley Publishing Company, Inc., Reading, MA.

2. A Survey of Uncertain Data Algorithms and Applications

3. Parag Agrawal and Jennifer Widom. 2009. Continuous uncertainty in trio. In Proceedings of the 3rd VLDB Workshop on Management of Uncertain Data (MUD’09). Centre for Telematics and Information Technology (CTIT), 17–32.

4. Mario Alviano and Arnel Zamayla. 2021. A speech about generative datalog and non-measurable sets. In Proceedings of the International Conference on Logic Programming Workshops co-located with the 37th International Conference on Logic Programming (ICLP’21). 8. Retrieved from http://ceur-ws.org/Vol-2970/aspocpinvited2.pdf.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GenSQL: A Probabilistic Programming System for Querying Generative Models of Database Tables;Proceedings of the ACM on Programming Languages;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3