Abstract
(1) Background: Geological surveying is undergoing a digital transformation process towards the adoption of intelligent methods in China. Cognitive intelligence methods, such as those based on knowledge graphs and machine reading, have made progress in many domains and also provide a technical basis for quality detection in unstructured lithographic description texts. (2) Methods: First, the named entities and the relations of the domain-specific knowledge graph of petrography were defined based on the petrographic theory. Second, research was carried out based on a manually annotated corpus of petrographic description. The extraction of N-ary and single-entity overlapping relations and the separation of complex entities are key steps in this process. Third, a petrographic knowledge graph was formulated based on prior knowledge. Finally, the consistency between knowledge triples extracted from the corpus and the petrographic knowledge graph was calculated. The 1:50,000 sheet of Fengxiangyi located in the Dabie orogenic belt was selected for the empirical research. (3) Results: Using machine reading and the knowledge graph, petrographic knowledge can be extracted and the knowledge consistency calculation can quickly detect description errors about textures, structures and mineral components in petrographic description. (4) Conclusions: The proposed framework can be used to realise the intelligent inspection of petrographic knowledge with complex entities and relations and to improve the quality of petrographic description texts effectively.
Funder
National Natural Science Foundation of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献