Machine learning for data-driven discovery in solid Earth geoscience

Author:

Bergen Karianne J.12ORCID,Johnson Paul A.3ORCID,de Hoop Maarten V.4ORCID,Beroza Gregory C.5

Affiliation:

1. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.

2. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA.

3. Geophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

4. Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA.

5. Department of Geophysics, Stanford University, Stanford, CA 94305, USA.

Abstract

Automating geoscience analysis Solid Earth geoscience is a field that has very large set of observations, which are ideal for analysis with machine-learning methods. Bergen et al. review how these methods can be applied to solid Earth datasets. Adopting machine-learning techniques is important for extracting information and for understanding the increasing amount of complex data collected in the geosciences. Science , this issue p. eaau0323

Funder

National Science Foundation

U.S. Department of Energy

Simons Foundation

Los Alamos National Laboratory

Geo-Mathematical Imaging Group

Harvard Data Science Initiative

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3