The COVID-19 incidence in Italian regions correlates with low temperature, mobility and PM10 pollution but lethality only with low temperature

Author:

Carta Mauro GiovanniORCID,Minerba LuigiORCID,Demontis Roberto,Orrù GermanoORCID,Romano Ferdinando,Scano AlessandraORCID,Restivo Angelo,Del Giacco Stefano,Deidda SimonaORCID,Firnu DavideORCID,Campagna Marcello,Meloni FedericoORCID,Cossu Giulia,Sancassiani FedericaORCID,Chessa LuchinoORCID,Kalcev GoceORCID,Littera Roberto,Zorcolo LuigiORCID,Aviles-Gonzale Cesar IvanORCID,Usai Paolo

Abstract

Background: The aim was to verify whether the density of particulate matter (PM10), the climate, and the mobility of people can influence the pandemic in the 19 regions and in the two autonomous Italian provinces as incidence rate and lethality.Design and Methods: The incidence rates per 100,000 inhabitants and the case fatality ratio (CFR) (dependent variables) in all Italian regions were calculated in January 2021 at John Hopkins University Coronavirus Center. The independent variables were: -Minimum average temperatures in the same month (January) of 2020, -Average pollution of PM10 in the air in each region in the last year available reported on a 0-10 scale to 0 = total absence of PM10 to 10 maximum pollutions. -Number of places in hotels occupied per inhabitants in 2020. Linear regression and Multiple Regression Analysis were carried out.Results: The spread of the COVID-19 in the Italian regions seems to be related to pollution of PM10, the number of beds occupied in hotels (as an index of mobility and temperature (indirect correlation). On the contrary, the CFR correlates inversely with temperature but not with pollution. Measuring the concomitant effect of two independent variables by means of Multiple Regression Analysis, temperature and pollution show a synergistic effect on COVID-19 incidence.Conclusions: The study seems to confirm the literature on the influence of temperature on the lethality of COVID-19 but adds the new results of an inverse relationship between the spread of the virus and low temperature in regions between the Mediterranean area (which includes southern Italy and Sicily and Sardinia islands) and the cold European temperate zone which includes the northern regions under the Alps. A new date also concerns the summation effect of the risk between cold weather and PM10 air pollution was found. Due to several methodic weakness the study has an exploratory than conclusive relevance.

Publisher

PAGEPress Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3