S-Artinian rings and finitely S-cogenerated rings

Author:

Sevim Esra Sengelen1,Tekir Unsal2,Koc Suat2

Affiliation:

1. Department of Mathematics, Istanbul Bilgi University, Istanbul, Turkey

2. Department of Mathematics, Marmara University, Istanbul, Turkey

Abstract

Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be a multiplicatively closed subset. In this paper, we study [Formula: see text]-Artinian rings and finitely [Formula: see text]-cogenerated rings. A commutative ring [Formula: see text] is said to be an [Formula: see text]-Artinian ring if for each descending chain of ideals [Formula: see text] of [Formula: see text] there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] for all [Formula: see text] Also, [Formula: see text] is called a finitely [Formula: see text]-cogenerated ring if for each family of ideals [Formula: see text] of [Formula: see text] where [Formula: see text] is an index set, [Formula: see text] implies [Formula: see text] for some [Formula: see text] and a finite subset [Formula: see text] Moreover, we characterize some special rings such as Artinian rings and finitely cogenerated rings. Also, we extend many properties of Artinian rings and finitely cogenerated rings to [Formula: see text]-Artinian rings and finitely [Formula: see text]-cogenerated rings.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some remarks on S-strongly prime submodules;São Paulo Journal of Mathematical Sciences;2024-03-08

2. Generalizations of S-semiprime submodules;Asian-European Journal of Mathematics;2023-09-06

3. The dual notion of $r$-submodules of modules;International Electronic Journal of Algebra;2023-07-10

4. An extension of $S$--noetherian rings and modules;International Electronic Journal of Algebra;2023-07-10

5. Eakin–Nagata–Eisenbud Theorem for Right $S$-Noetherian Rings;Taiwanese Journal of Mathematics;2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3