Abstract
For any commutative ring $A$ we introduce a generalization of $S$--noetherian rings using a here\-ditary torsion theory $\sigma$ instead of a multiplicatively closed subset $S\subseteq{A}$. It is proved that totally noetherian w.r.t. $\sigma$ is a local property, and if $A$ is a totally noetherian ring w.r.t $\sigma$, then $\sigma$ is of finite type.
Publisher
The International Electronic Journal of Algebra
Subject
Algebra and Number Theory
Reference15 articles.
1. H. Ahmed, $S$-Noetherian spectrum condition, Comm. Algebra, 46(8) (2018), 3314-3321.
2. D. D. Anderson and T. Dumitrescu, $S$-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
3. T.~Dumitrescu, Generic fiber of power series ring extensions, Comm. Algebra, 37(3) (2009), 1098-1103.
4. M. Eljeri, $S$-strongly finite type rings, Asian Research J. Math., 9(4) (2018), 1-9.
5. J. S. Golan, Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Math., 29, Pitman, 1986.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Totally simple modules;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2024-08-06