Abstract
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module.
A proper submodule $N$ of $M$ is said to be an $r$-submodule if
$am\in N$ with $(0:_Ma)=0$ implies that $m \in N$ for each $a\in R$ and $m\in M$.
The purpose of this paper is to introduce and investigate the dual notion of $r$-submodules of $M$.
Publisher
The International Electronic Journal of Algebra
Subject
Algebra and Number Theory
Reference15 articles.
1. D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30(9) (2002), 4407-4416.
2. A. Anebri, N. Mahdou and Ü. Tekir, Commutative rings and modules that are r-Noetherian, Bull. Korean Math. Soc., 58(5) (2021), 1221-1233.
3. A. Anebri, N. Mahdou and Ü. Tekir, On modules satisfying the descending chain condition on r-submodules, Comm. Algebra, 50(1) (2022), 383-391.
4. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4) (2007), 1189-1201.
5. H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8(1) (2009), 105-113.