4-NM AlN BARRIER ALL BINARY HFET WITH SiNx GATE DIELECTRIC

Author:

ZIMMERMANN TOM1,CAO YU1,JENA DEBDEEP1,XING HUILI GRACE1,SAUNIER PAUL2

Affiliation:

1. Electrical Engineering Department, University of Notre Dame, Notre Dame, IN 46556, USA

2. Triquint Semiconductors, Dallas, TX, USA

Abstract

Undoped AlN / GaN heterostructures, grown on sapphire by molecular beam epitaxy, exhibit very low sheet resistances, ~ 150 Ohm/sq, resulting from the 2-dimensional electron gas situated underneath a 4 nm thin AlN barrier. This extraordinarily low sheet resistance is a result of high carrier mobility and concentration (~ 1200 cm2/Vs and ~ 3.5×1013 cm-2 at room temperature), which is ~ 3 × smaller than that of the conventional AlGaN / GaN heterojunction field effect transistor (HFET) structures. Using a 5 nm SiN x deposited by plasma enhanced chemical vapor deposition as gate-dielectric, HFETs were fabricated using these all binary AlN / GaN heterostructures and the gate tunneling current was found to be efficiently suppressed. Output current densities of 1.7 A/mm and 2.1 A/mm, intrinsic transconductance of 455 mS/mm and 785 mS/mm, were achieved for 2 µm and 250 nm gate-length devices, respectively. Current gain cut-off frequency fT of 3.5 GHz and 60 GHz were measured on 2 µm and 250 nm gate-length devices, limited by the high ohmic contact resistance as well as the relatively long gate length in comparison to the electron mean free path under high electric fields.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3