THE MULTI-DIMENSIONAL ENSEMBLE EMPIRICAL MODE DECOMPOSITION METHOD

Author:

WU ZHAOHUA1,HUANG NORDEN E.2,CHEN XIANYAO3

Affiliation:

1. Department of Meteorology and Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA

2. Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan 32001, ROC

3. The First Institute of Oceanography, SOA, Qingdao 266061, People's Republic of China

Abstract

A multi-dimensional ensemble empirical mode decomposition (MEEMD) for multi-dimensional data (such as images or solid with variable density) is proposed here. The decomposition is based on the applications of ensemble empirical mode decomposition (EEMD) to slices of data in each and every dimension involved. The final reconstruction of the corresponding intrinsic mode function (IMF) is based on a comparable minimal scale combination principle. For two-dimensional spatial data or images, f(x,y), we consider the data (or image) as a collection of one-dimensional series in both x-direction and y-direction. Each of the one-dimensional slices is decomposed through EEMD with the slice of the similar scale reconstructed in resulting two-dimensional pseudo-IMF-like components. This new two-dimensional data is further decomposed, but the data is considered as a collection of one-dimensional series in y-direction along locations in x-direction. In this way, we obtain a collection of two-dimensional components. These directly resulted components are further combined into a reduced set of final components based on a minimal-scale combination strategy. The approach for two-dimensional spatial data can be extended to multi-dimensional data. EEMD is applied in the first dimension, then in the second direction, and then in the third direction, etc., using the almost identical procedure as for the two-dimensional spatial data. A similar comparable minimal-scale combination strategy can be applied to combine all the directly resulted components into a small set of multi-dimensional final components. For multi-dimensional temporal-spatial data, EEMD is applied to time series of each spatial location to obtain IMF-like components of different time scales. All the ith IMF-like components of all the time series of all spatial locations are arranged to obtain ith temporal-spatial multi-dimensional IMF-like component. The same approach to the one used in temporal-spatial data decomposition is used to obtain the resulting two-dimensional IMF-like components. This approach could be extended to any higher dimensional temporal-spatial data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3