ON INSTANTANEOUS FREQUENCY

Author:

HUANG NORDEN E.1,WU ZHAOHUA2,LONG STEVEN R.3,ARNOLD KENNETH C.4,CHEN XIANYAO5,BLANK KARIN6

Affiliation:

1. Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan 32001, Republic of China

2. Department of Meteorology & Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306, USA

3. NASA Goddard Space Flight Center, Ocean Sciences Branch/Code 614.2, Wallops Flight Facility, Wallops Island, VA 23337, USA

4. Department of Electric and Computer Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

5. The First Institute of Oceanography, SOA, Qingdao 266061, People's Republic of China

6. Code 564, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract

Instantaneous frequency (IF) is necessary for understanding the detailed mechanisms for nonlinear and nonstationary processes. Historically, IF was computed from analytic signal (AS) through the Hilbert transform. This paper offers an overview of the difficulties involved in using AS, and two new methods to overcome the difficulties for computing IF. The first approach is to compute the quadrature (defined here as a simple 90° shift of phase angle) directly. The second approach is designated as the normalized Hilbert transform (NHT), which consists of applying the Hilbert transform to the empirically determined FM signals. Additionally, we have also introduced alternative methods to compute local frequency, the generalized zero-crossing (GZC), and the teager energy operator (TEO) methods. Through careful comparisons, we found that the NHT and direct quadrature gave the best overall performance. While the TEO method is the most localized, it is limited to data from linear processes, the GZC method is the most robust and accurate although limited to the mean frequency over a quarter wavelength of temporal resolution. With these results, we believe most of the problems associated with the IF determination are resolved, and a true time–frequency analysis is thus taking another step toward maturity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3