Methodological Recommendations for the Creation of Sensor Measurement Systems for Respiratory Rate Monitoring Based on Photoplethysmographic Signal Processing

Author:

Petrenko P. B.1

Affiliation:

1. Synergy Design Bureau

Abstract

A methodical apparatus for creating sensor measurement systems for monitoring human respiration rate is proposed. It includes a method for estimating respiratory rate based on statistical analysis of photoplethysmographic signals (human pulse wave), a method for selecting priority regions for estimating respiratory rate, and a criterion for determining the required bracelet tension during measurements. The application of the respiratory rate estimation method involves calculating the Correntropy spectral density of the pulse wave signal. A distinctive feature of the method is the use of an algorithm for selecting the priority empirical mode of the Hilbert-Huang decomposition, which is most closely related to the respiratory rate. Experimental verification of the method showed that the mean value of the absolute error for 58.8% of the sample of calculated respiratory rate values did not exceed 1 breath/min, and the 95% confidence interval for the mean absolute error of the entire sample was [0.72–2.2] breaths/min.

Publisher

The Russian Academy of Sciences

Reference28 articles.

1. Aificher E. S., Dzhervis B. U. Tsifrovaya obrabotka signalov: prakticheskii podkhod: per. s angl. [Digital Signal Processing: A Practical Approach]. Moscow. Williams Publishers, 2008. 992 p. (In Russian).

2. Garanin A. A., Shipunov I. D., Rubanenko A. O., Sannikova N. O. Beskontaktnye metody izmereniya chastoty dykhaniya: (obzor literatury). Vestnik novykh meditsinskikh tekhnologii. [Non-contact methods of respiratory rate measurement: (literature review). Bulletin of new medical technologies]. Electronic edition. 2023. № 5. P. 64–72. http://doi.org/ 10.24412/2075-4094-2023-5-1-9 (In Russian).

3. Gutsol L. O., Nepomnyashchikh S. F., Korytov L. I., Gubina M. I., Tsybikov N. N., Vitkovskii Yu.A. Fiziologicheskie i patofiziologicheskie aspekty vneshnego dykhaniya. [Physiologic and pathophysiologic aspects of external respiration]. State Budgetary Educational Institution of Higher Professional Education of State Medical University of Russia, Department of Pathologic Physiology with a Course of Clinical Immunology, Department of Normal Physiology. Irkutsk, IGMU, 2014. 116 p. (In Russian).

4. Kan S. C., Mikulovich A. V., Mikulovich V. I. Analiz nestatsionarnykh signalov na osnove preobrazovaniya Gil’berta-Khuanga [Analysis of non-stationary signals on the basis of Hilbert-Huang transform. Informatics]. Informatics [Informatika]. 2010. № 2. P. 25–35. (In Russian).

5. Kublanov V. S., Dolganov A. Yu., Kostousov V. B., Nemirko A. P. , Manilo L. A., Petrenko T. S., Gamboa H., Rodriges J. Biomeditsinskie signaly i izobrazheniya v tsifrovom zdravookhranenii: khranenie, obrabotka i analiz. [Biomedical signals and images in digital health care: storage, processing and analysis: textbook]. Yekaterinburg. Publ. of the Ural Univ. 2020. 240 p. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3