Application of Fast MEEMD–ConvLSTM in Sea Surface Temperature Predictions

Author:

Wanigasekara R. W. W. M. U. P.12ORCID,Zhang Zhenqiu1,Wang Weiqiang1,Luo Yao1,Pan Gang1ORCID

Affiliation:

1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Sea Surface Temperature (SST) is of great importance to study several major phenomena due to ocean interactions with other earth systems. Previous studies on SST based on statistical inference methods were less accurate for longer prediction lengths. A considerable number of studies in recent years involve machine learning for SST modeling. These models were able to mitigate this problem to some length by modeling SST patterns and trends. Sequence analysis by decomposition is used for SST forecasting in several studies. Ensemble Empirical Mode Decomposition (EEMD) has been proven in previous studies as a useful method for this. The application of EEMD in spatiotemporal modeling has been introduced as Multidimensional EEMD (MEEMD). The aim of this study is to employ fast MEEMD methods to decompose the SST spatiotemporal dataset and apply a Convolutional Long Short-Term Memory (ConvLSTM)-based model to model and forecast SST. The results show that the fast MEEMD method is capable of enhancing spatiotemporal SST modeling compared to the Linear Inverse Model (LIM) and ConvLSTM model without decomposition. The model was further validated by making predictions from April to May 2023 and comparing them to original SST values. There was a high consistency between predicted and real SST values.

Funder

National Key Research and Development Program of China

The Science and Technology Planning Project of Guangdong Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3