MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS

Author:

ARNOLD DOUGLAS N.1,FALK RICHARD S.2,GOPALAKRISHNAN JAY3

Affiliation:

1. School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

2. Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

3. Department of Mathematics and Statistics, Portland State University, P. O. Box 751, Portland, OR 97207, USA

Abstract

We consider the finite element solution of the vector Laplace equation on a domain in two dimensions. For various choices of boundary conditions, it is known that a mixed finite element method, in which the rotation of the solution is introduced as a second unknown, is advantageous, and appropriate choices of mixed finite element spaces lead to a stable, optimally convergent discretization. However, the theory that leads to these conclusions does not apply to the case of Dirichlet boundary conditions, in which both components of the solution vanish on the boundary. We show, by computational example, that indeed such mixed finite elements do not perform optimally in this case, and we analyze the suboptimal convergence that does occur. As we indicate, these results have implications for the solution of the biharmonic equation and of the Stokes equations using a mixed formulation involving the vorticity.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3