Finite element exterior calculus: from Hodge theory to numerical stability

Author:

Arnold Douglas,Falk Richard,Winther Ragnar

Abstract

This article reports on the confluence of two streams of research, one emanating from the fields of numerical analysis and scientific computation, the other from topology and geometry. In it we consider the numerical discretization of partial differential equations that are related to differential complexes so that de Rham cohomology and Hodge theory are key tools for exploring the well-posedness of the continuous problem. The discretization methods we consider are finite element methods, in which a variational or weak formulation of the PDE problem is approximated by restricting the trial subspace to an appropriately constructed piecewise polynomial subspace. After a brief introduction to finite element methods, we develop an abstract Hilbert space framework for analyzing the stability and convergence of such discretizations. In this framework, the differential complex is represented by a complex of Hilbert spaces, and stability is obtained by transferring Hodge-theoretic structures that ensure well-posedness of the continuous problem from the continuous level to the discrete. We show stable discretization is achieved if the finite element spaces satisfy two hypotheses: they can be arranged into a subcomplex of this Hilbert complex, and there exists a bounded cochain projection from that complex to the subcomplex. In the next part of the paper, we consider the most canonical example of the abstract theory, in which the Hilbert complex is the de Rham complex of a domain in Euclidean space. We use the Koszul complex to construct two families of finite element differential forms, show that these can be arranged in subcomplexes of the de Rham complex in numerous ways, and for each construct a bounded cochain projection. The abstract theory therefore applies to give the stability and convergence of finite element approximations of the Hodge Laplacian. Other applications are considered as well, especially the elasticity complex and its application to the equations of elasticity. Background material is included to make the presentation self-contained for a variety of readers.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference90 articles.

1. A mixed finite element method for elasticity in three dimensions;Adams, Scot;J. Sci. Comput.,2005

2. Vector potentials in three-dimensional non-smooth domains;Amrouche, C.;Math. Methods Appl. Sci.,1998

3. Finite elements for symmetric tensors in three dimensions;Arnold, Douglas N.;Math. Comp.,2008

4. PEERS: a new mixed finite element for plane elasticity;Arnold, Douglas N.;Japan J. Appl. Math.,1984

5. A family of higher order mixed finite element methods for plane elasticity;Arnold, Douglas N.;Numer. Math.,1984

Cited by 391 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3