Symmetry and Invariant Bases in Finite Element Exterior Calculus

Author:

Licht Martin W.

Abstract

AbstractWe study symmetries of bases and spanning sets in finite element exterior calculus, using representation theory. We want to know which vector-valued finite element spaces have bases invariant under permutation of vertex indices. The permutations of vertex indices correspond to the symmetry group of the simplex. That symmetry group is represented on simplicial finite element spaces by the pullback action. We determine a natural notion of invariance and sufficient conditions on the dimension and polynomial degree for the existence of invariant bases. We conjecture that these conditions are necessary too. We utilize Djoković and Malzan’s classification of monomial irreducible representations of the symmetric group and show new symmetries of the geometric decomposition and canonical isomorphisms of the finite element spaces. Explicit invariant bases with complex coefficients are constructed in dimensions two and three for different spaces of finite element differential forms.

Funder

EPFL Lausanne

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3