A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES

Author:

HUMPHREY J. D.1,RAJAGOPAL K. R.1

Affiliation:

1. Biomedical Engineering Program and Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Abstract

Not long ago it was thought that the most important characteristics of the mechanics of soft tissues were their complex mechanical properties: they often exhibit nonlinear, anisotropic, nearly incompressible, viscoelastic behavior over finite strains. Indeed, these properties endow soft tissues with unique structural capabilities that continue to be extremely challenging to quantify via constitutive relations. More recently, however, we have come to appreciate an even more important characteristic of soft tissues, their homeostatic tendency to adapt in response to changes in their mechanical environment. Thus, to understand well the biomechanical properties of a soft tissue, we must not only quantify their structure and function at a given time, we must also quantify how their structure and function change in response to altered stimuli. In this paper, we introduce a new constrained mixture theory model for studying growth and remodeling of soft tissues. The model melds ideas from classical mixture and homogenization theories so as to exploit advantages of each while avoiding particular difficulties. Salient features include the kinetics of the production and removal of individual constituents and recognition that the neighborhood of a material point of each constituent can have a different, evolving natural (i.e. stress-free) configuration.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 631 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3