Transmural organization of the arterial media. The lamellar unit revisited.

Author:

Clark J M,Glagov S

Abstract

When scanning electron micrographs of orthogonal transmural fracture surfaces of distended aortas were compared with appearances on corresponding semithin light microscopic and ultrathin transmission electron microscopic sections, medial lamellar units could be resolved into composites of overlapping, musculo-elastic fascicles lying parallel to tangential planes of section. Each fascicle consisted of a group of commonly oriented, elongated smooth muscle cells and an encompassing array of branching, similarly oriented elastic fibers. On longitudinal sections of straight segments of the aorta, fascicles appeared as closely packed, transversely transected smooth muscle cell groups within compartments formed by similarly transected elastic fibers. On transverse sections, fascicles appeared as groups of cells within cell strips or layers, each of which was bracketed on both its luminal and abluminal sides by straight elastic fibers. Fascicles were increasingly evident during growth as commonly oriented groups of cells within the already present concentric cell layers became demarcated by enlarging elastic fibers. Wavy collagen fiber bundles, distinct from the interlaced fibrils of the immediate pericellular matrix, were interposed mainly between the facing elastin systems within the fibrous regions between cell layers. Thus, the radial transmural disposition of cells and matrix fibers on transverse sections of the media in well developed aortas proved to be: elastin-cells-elastin--collagen bundles--elastin-cells-elastin--collagen bundles, etc. Medias of major branch arteries were also composed of musculo-elastic fascicles, but their encompassing elastic fiber systems were less prominent than in the aorta. In straight segments of aortas and arteries, fascicles were uniform in size at any given transmural level and oriented mainly circumferentially. At bends and branch points fascicles were smaller and less uniform in size and orientation. In relation to changes in vessel wall curvature, alignment of the fascicles was usually in the direction of presumed resultant tensile stress. The findings suggest that these subunits of medial organization correspond to the distribution and magnitude of tensile stresses.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference61 articles.

1. Structural Basis for the Static Mechanical Properties of the Aortic Media

2. A Lamellar Unit of Aortic Medial Structure and Function in Mammals

3. Hemodynamic risk factors: Mechanical stress, mural architecture, medial nutrition, and the vulnerability of arteries to atherosclerosis. In: WisslerRW, Geer JC, eds.The pathogenesis of atherosclerosis;Glagov S;Baltimore: Williams & Wilkens,1972

4. Structural integration of the arterial wall: I. Relationships and attachments of medial smooth muscle cells in normally distended and hyperdistended aortas;Clark JM;Lab Invest,1979

5. Biology data book, vol III;Altaian PL;Bethesda: Federation of American Societies for Experimental Biology,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3