Computational analysis of heart valve growth and remodeling after the Ross procedure

Author:

Middendorp Elmer,Braeu Fabian,Baaijens Frank P. T.,Humphrey Jay D.,Cyron Christian J.,Loerakker Sandra

Abstract

AbstractDuring the Ross procedure, an aortic heart valve is replaced by a patient’s own pulmonary valve. The pulmonary autograft subsequently undergoes substantial growth and remodeling (G&R) due to its exposure to increased hemodynamic loads. In this study, we developed a homogenized constrained mixture model to understand the observed adaptation of the autograft leaflets in response to the changed hemodynamic environment. This model was based on the hypothesis that tissue G&R aims to preserve mechanical homeostasis for each tissue constituent. To model the Ross procedure, we simulated the exposure of a pulmonary valve to aortic pressure conditions and the subsequent G&R of the valve. Specifically, we investigated the effects of assuming either stress- or stretch-based mechanical homeostasis, the use of blood pressure control, and the effect of root dilation. With this model, we could explain different observations from published clinical studies, such as the increase in thickness, change in collagen organization, and change in tissue composition. In addition, we found that G&R based on stress-based homeostasis could better capture the observed changes in tissue composition than G&R based on stretch-based homeostasis, and that root dilation or blood pressure control can result in more leaflet elongation. Finally, our model demonstrated that successful adaptation can only occur when the mechanically induced tissue deposition is sufficiently larger than tissue degradation, such that leaflet thickening overrules leaflet dilation. In conclusion, our findings demonstrated that G&R based on mechanical homeostasis can capture the observed heart valve adaptation after the Ross procedure. Finally, this study presents a novel homogenized mixture model that can be used to investigate other cases of heart valve G&R as well.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3