Affiliation:
1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Abstract
The airtightness of non-metallic sealing structures undergoing harsh conditions is very crucial to the reliability of equipment in many industrial fields. In this study, the gas penetration through a non-metallic sealing material (NSM) with micro-nano porous structure under stress was investigated in detail based on the transport theory of fractal porous media. A complete theoretical model for predicting the stress sensitivity of the gasket permeability was developed, in which the slippage effect was of concern due to very fine pore size. The permeability of a flexible graphite gasket under different stresses was numerically predicted via scanning electron microscopy (SEM) and image processing. The influencing factors on the permeability of the NSM were analyzed quantitatively and good agreements with existing experimental results demonstrate the validity of the proposed model. Since the effects of the pore-size distribution and flow pattern regime were taken into account, the parameters of the model had a clear physical meaning and the model was suitable for determining the mechanism of penetration leakage through the NSM. In addition, the model could also be used for the analysis of other tight porous media with complex microstructure under stress deformation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modelling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献