A NEW FRACTAL TEMPORAL CONDUCTIVITY MODEL FOR PROPPED FRACTURE AND ITS APPLICATION IN TIGHT RESERVOIRS

Author:

CAI MINGYU12ORCID,ELSWORTH DEREK2,SU YULIANG1,LU MINGJING1

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China

2. Energy and Mineral Engineering & Geosciences, The Pennsylvania State University, University Park, PA 16802, United States

Abstract

Current hydraulic fracture conductivity evolution models fail to incorporate the fractures microscopic petrophysical properties, and notable discrepancies consequently exist between predictions and observations. We present a new conductivity model considering the irregular fracture undulation and channel roughness in propped fractures. The propped fracture networks are treated as bundles of tortuous capillaries with a fractal distribution of sizes with the size of a single capillary calculated using a constitutive model representing contacting rock surfaces under normal cyclic loading. The capillaries tortuosity is described by the effective inclination angle, and the fracture closure is calculated by the history of the in situ stress distribution and rock property changes. The fracture surface roughness, number of capillaries per unit width of the hydraulic fracture, and total cross-sectional area are obtained using fractal theory. The proposed model is validated by comparison with experimental data and other analytical solutions. The results indicate that the apparent permeability and conductivity of the fracture significantly decrease to 58.0% and 48.2% within 2 years of production, respectively, and then remain steady for the remainder of the well life. Compared with fixed fracture conductivity, the temporal variability in conductivity leads to a lower formation pressure drop and reduction in final production. Furthermore, the influences of the effective inclination angle, relative roughness of micro-channel, fracture porosity, and microchannel fractal dimension on the conductivity are investigated and the conductivity proves to be largely controlled by the fracture porosity, while the influence of the relative roughness ratio on the conductivity is least significant.

Funder

National Natural Science Foundation of China

Graduate Innovative Engineering Project of China University of Petroleum

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3