Single-Channel EEG-Based Machine Learning Method for Prescreening Major Depressive Disorder

Author:

Wan Zhijiang1,Zhang Hao2,Huang Jiajin3,Zhou Haiyan3,Yang Jie4,Zhong Ning1

Affiliation:

1. Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi 371-0864, Japan

2. College of Economics and Management, Nanjing Forestry University, Nanjing Jiangsu 210037, P. R. China

3. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, P. R. China

4. Beijing Anding Hospital of Capital Medical University, Beijing 100088, P. R. China

Abstract

Many studies developed the machine learning method for discriminating Major Depressive Disorder (MDD) and normal control based on multi-channel electroencephalogram (EEG) data, less concerned about using single channel EEG collected from forehead scalp to discriminate the MDD. The EEG dataset is collected by the Fp1 and Fp2 electrode of a 32-channel EEG system. The result demonstrates that the classification performance based on the EEG of Fp1 location exceeds the performance based on the EEG of Fp2 location, and shows that single-channel EEG analysis can provide discrimination of MDD at the level of multi-channel EEG analysis. Furthermore, a portable EEG device collecting the signal from Fp1 location is used to collect the second dataset. The Classification and Regression Tree combining genetic algorithm (GA) achieves the highest accuracy of 86.67% based on leave-one-participant-out cross validation, which shows that the single-channel EEG-based machine learning method is promising to support MDD prescreening application.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Beijing Outstanding Talent Training Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3