Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas

Author:

Wang Zaihao1,Ding Yuhao1,Yuan Wei23,Chen Hongyu1ORCID,Chen Wei4,Chen Chen5

Affiliation:

1. Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China

2. Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China

3. Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China

4. School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia

5. Human Phenome Institute, Fudan University, Shanghai 201203, China

Abstract

EEG, which can provide brain alteration information via recording the electrical activity of neurons in the cerebral cortex, has been widely used in neurophysiology. However, conventional wet electrodes in EEG monitoring typically suffer from inherent limitations, including the requirement of skin pretreatment, the risk of superficial skin infections, and signal performance deterioration that may occur over time due to the air drying of the conductive gel. Although the emergence of dry electrodes has overcome these shortcomings, their electrode–skin contact impedance is significantly high and unstable, especially in hair-covered areas. To address the above problems, an active claw-shaped dry electrode is designed, moving from electrode morphological design, slurry preparation, and coating to active electrode circuit design. The active claw-shaped dry electrode, which consists of a claw-shaped electrode and active electrode circuit, is dedicated to offering a flexible solution for elevating electrode fittings on the scalp in hair-covered areas, reducing electrode–skin contact impedance and thus improving the quality of the acquired EEG signal. The performance of the proposed electrodes was verified by impedance, active electrode circuit, eyes open-closed, steady-state visually evoked potential (SSVEP), and anti-interference tests, based on EEG signal acquisition. Experimental results show that the proposed claw-shaped electrodes (without active circuit) can offer a better fit between the scalp and electrodes, with a low electrode–skin contact impedance (18.62 KΩ@1 Hz in the hairless region and 122.15 KΩ@1 Hz in the hair-covered region). In addition, with the active circuit, the signal-to-noise ratio (SNR) of the acquiring EEG signal was improved and power frequency interference was restrained, therefore, the proposed electrodes can yield an EEG signal quality comparable to wet electrodes.

Funder

Greater Bay Area Institute of Precision Medicine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3