Machine Learning Model for Computer-Aided Depression Screening among Young Adults Using Wireless EEG Headset

Author:

Sakib Nazmus12ORCID,Islam Md Kafiul12ORCID,Faruk Tasnuva23ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh

2. Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh

3. Department of Public Health, Independent University Bangladesh (IUB), Dhaka, Bangladesh

Abstract

Depression is a disorder that if not treated can hamper the quality of life. EEG has shown great promise in detecting depressed individuals from depression control individuals. It overcomes the limitations of traditional questionnaire-based methods. In this study, a machine learning-based method for detecting depression among young adults using EEG data recorded by the wireless headset is proposed. For this reason, EEG data has been recorded using an Emotiv Epoc+ headset. A total of 32 young adults participated and the PHQ9 screening tool was used to identify depressed participants. Features such as skewness, kurtosis, variance, Hjorth parameters, Shannon entropy, and Log energy entropy from 1 to 5 sec data filtered at different band frequencies were applied to KNN and SVM classifiers with different kernels. At AB band (8–30 Hz) frequency, 98.43 ± 0.15% accuracy was achieved by extracting Hjorth parameters, Shannon entropy, and Log energy entropy from 5 sec samples with a 5-fold CV using a KNN classifier. And with the same features and classifier overall accuracy = 98.10 ± 0.11, NPV = 0.977, precision = 0.984, sensitivity = 0.984, specificity = 0.976, and F1 score = 0.984 was achieved after splitting the data to 70/30 ratio for training and testing with 5-fold CV. From the findings, it can be concluded that EEG data from an Emotiv headset can be used to detect depression with the proposed method.

Funder

Independent University, Bangladesh

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3