4D Printing of Self-Folding Hydrogel Tubes for Potential Tissue Engineering Applications

Author:

Zhao Yu-Dong1,Lai Jia-Hui1,Wang Min1ORCID

Affiliation:

1. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

In recent years, 4D printing has gained increasing attention in the tissue engineering field since this advanced manufacturing platform can create stimulus-responsive structures, which can change their shapes, functions, and/or properties when appropriate external stimulus/stimuli is/are applied. A number of hydrogels with swellable/shrinkable abilities have been explored for 4D printing to fabricate different shape-morphing structures for tissue engineering. Among them, gelatin methacryloyl (GelMA) has been 4D printed, which can self-fold into microtubular structures. Currently, the self-folding ability of 4D printed GelMA hydrogels is mainly based on the different cross-linking degrees (which control and govern the swelling degrees) across the thickness of hydrogels. However, this strategy alone can only form self-folding GelMA tubes with diameters at the micrometer level and cannot create self-folding GelMA tubes with diameters at the millimeter level, which is mainly due to the insufficient internal force generated in 4D printed GelMA hydrogels when they are exposed to water. To overcome this limitation, this study has investigated a new strategy to fabricate self-folding GelMA tubes with large diameters at the millimeter level for tissue engineering applications. The new strategy introduced a cross-linking degree gradient across the GelMA plane in addition to its thickness by printing a second layer of strips on the first 4D printed GelMA film. In the aqueous environment, under the current fabrication condition, such bilayer GelMA hydrogels could self-fold into tubes of larger diameters up to 6[Formula: see text]mm. The in vitro release behavior of heparin incorporated into the 4D printed GelMA was also studied. It was shown that heparin release could be controlled by the GelMA concentration and heparin content in 4D printed GelMA. The 4D printed GelMA hydrogels with the improved self-folding ability and controlled release of a drug are promising for targeted tissue engineering applications.

Funder

GRF research

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3