Biomimicking trilayer scaffolds with controlled estradiol release for uterine tissue regeneration

Author:

Chen Shangsi1ORCID,Li Junzhi1,Zheng Liwu2,Huang Jie3,Wang Min1

Affiliation:

1. Department of Mechanical Engineering The University of Hong Kong Pokfulam Road Hong Kong

2. Faculty of Dentistry The University of Hong Kong Sai Ying Pun Hong Kong

3. Department of Mechanical Engineering University College London London UK

Abstract

AbstractScaffold‐based tissue engineering provides an efficient approach for repairing uterine tissue defects and restoring fertility. In the current study, a novel trilayer tissue engineering scaffold with high similarity to the uterine tissue in structure was designed and fabricated via 4D printing, electrospinning and 3D bioprinting for uterine regeneration. Highly stretchable poly(l‐lactide‐co‐trimethylene carbonate) (PLLA‐co‐TMC, “PTMC” in short)/thermoplastic polyurethane (TPU) polymer blend scaffolds were firstly made via 4D printing. To improve the biocompatibility, porous poly(lactic acid‐co‐glycolic acid) (PLGA)/gelatin methacryloyl (GelMA) fibers incorporated with polydopamine (PDA) particles were produced on PTMC/TPU scaffolds via electrospinning. Importantly, estradiol (E2) was encapsulated in PDA particles. The bilayer scaffolds thus produced could provide controlled and sustained release of E2. Subsequently, bone marrow derived mesenchymal stem cells (BMSCs) were mixed with gelatin methacryloyl (GelMA)‐based inks and the formulated bioinks were used to fabricate a cell‐laden hydrogel layer on the bilayer scaffolds via 3D bioprinting, forming ultimately biomimicking trilayer scaffolds for uterine tissue regeneration. The trilayer tissue engineering scaffolds thus formed exhibited a shape morphing ability by transforming from the planar shape to tubular structures when immersed in the culture medium at 37°C. The trilayer tissue engineering scaffolds under development would provide new insights for uterine tissue regeneration.

Funder

University of Hong Kong

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3