A Genetic Algorithm for Hybrid Job-Shop Scheduling Problems with Minimizing the Makespan or Mean Flow Time

Author:

Gholami Omid1,Sotskov Yuri N.2,Werner Frank3

Affiliation:

1. Department of Computer Science and Engineering, Blekinge Institute of Technology, Karlskrona 37179, Sweden

2. United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganova Str 6, Minsk 220012, Belarus

3. Faculty of Mathematics, Otto-von-Guericke-University, Magdeburg, Germany

Abstract

We address a generalization of the classical job-shop problem which is called a hybrid job-shop problem. The criteria under consideration are the minimization of the makespan and mean flow time. In the hybrid job-shop, machines of type [Formula: see text] are available for processing the specific subset [Formula: see text] of the given operations. Each set [Formula: see text] may be partitioned into subsets for their processing on the machines of type [Formula: see text]. Solving the hybrid job-shop problem implies the solution of two subproblems: an assignment of all operations from the set [Formula: see text] to the machines of type [Formula: see text] and finding optimal sequences of the operations for their processing on each machine. In this paper, a genetic algorithm is developed to solve these two subproblems simultaneously. For solving the subproblems, a special chromosome is used in the genetic algorithm based on a mixed graph model. We compare our genetic algorithms with a branch-and-bound algorithm and three other recent heuristic algorithms from the literature. Computational results for benchmark instances with 10 jobs and up to 50 machines show that the proposed genetic algorithm is rather efficient for both criteria. Compared with the other heuristics, the new algorithm gives most often an optimal solution and the average percentage deviation from the optimal function value is about 4%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3