Abstract
In recent years, optimization problems have been intriguing in the field of computation and engineering due to various conflicting objectives. The complexity of the optimization problem also dramatically increases with respect to a complex search space. Nature-Inspired Optimization Algorithms (NIOAs) are becoming dominant algorithms because of their flexibility and simplicity in solving the different kinds of optimization problems. Hence, the NIOAs may be struck with local optima due to an imbalance in selection strategy, and which is difficult when stabilizing exploration and exploitation in the search space. To tackle this problem, we propose a novel Java macaque algorithm that mimics the natural behavior of the Java macaque monkeys. The Java macaque algorithm uses a promising social hierarchy-based selection process and also achieves well-balanced exploration and exploitation by using multiple search agents with a multi-group population, male replacement, and learning processes. Then, the proposed algorithm extensively experimented with the benchmark function, including unimodal, multimodal, and fixed-dimension multimodal functions for the continuous optimization problem, and the Travelling Salesman Problem (TSP) was utilized for the discrete optimization problem. The experimental outcome depicts the efficiency of the proposed Java macaque algorithm over the existing dominant optimization algorithms.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献