SIMULATED ANNEALING GENETIC ALGORITHM-BASED HARVESTER OPERATION SCHEDULING MODEL

Author:

Zhang Qingkai1,Cao Guangqiao2,Zhang Junjie3,Huang Yuxiang3,Chen Cong2,Zhang Meng2

Affiliation:

1. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China

2. Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China

3. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

Abstract

To address problems involving the poor matching ability of supply and demand information and outdated scheduling methods in agricultural machinery operation service, in this study, we proposed a harvester operation scheduling model and algorithm for an order-oriented multi-machine collaborative operation within a region. First, we analysed the order-oriented multi-machine collaborative operation within the region and the characteristics of agricultural machinery operation scheduling, examined the revenue of a mechanized harvesting operation and the components of each cost, and constructed a harvester operation scheduling model with the operation income as the optimization goal. Second, we proposed a simulated annealing genetic algorithm-based harvester operation scheduling algorithm and analysed the validity and stability of the algorithm through experimental simulations. The results showed that the proposed harvester operation scheduling model effectively integrated the operating cost, transfer cost, waiting time cost, and operation delay cost of the harvester, and the accuracy of the harvester operation scheduling model was improved; the harvester operation scheduling algorithm based on simulated annealing genetic algorithm (SAGA) was able to obtain a global near-optimal solution of high quality and stability with high computational efficiency.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3