A zero polynomial of virtual knots

Author:

Jeong Myeong-Ju1

Affiliation:

1. Department of Mathematics, Korea Science Academy of KAIST, Busan 614-822, Republic of Korea

Abstract

In 2013, Cheng and Gao introduced the writhe polynomial of virtual knots and Kauffman introduced the affine index polynomial of virtual knots. We introduce a zero polynomial of virtual knots of a similar type by considering weights of a suitable collection of crossings of a virtual knot diagram. We show that the zero polynomial gives a Vassiliev invariant of degree 1. It distinguishes a pair of virtual knots that cannot be distinguished by the affine index polynomial and the writhe polynomial.

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A two-variable polynomial invariant of virtual knots;Journal of Knot Theory and Its Ramifications;2024-01-19

2. A new invariant of planar knotoids and finite-type invariants;Journal of Knot Theory and Its Ramifications;2023-10-30

3. Representations of Flat Virtual Braids by Automorphisms of Free Group;Symmetry;2023-08-03

4. Intersection formulas for parities on virtual knots;Journal of Knot Theory and Its Ramifications;2023-04

5. Three-partite vertex model and knot invariants;Physica A: Statistical Mechanics and its Applications;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3