A new invariant of planar knotoids and finite-type invariants

Author:

Bataineh Khaled1ORCID,Batayneh Fawwaz2,Alkasasbeh Ahmad H.3

Affiliation:

1. Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan

2. Mathematics Division, College of Engineering, Kuwait College of Science and Technology, Doha, Kuwait

3. Oryx Universal College in Partnership with, Liverpool John Moores University, Doha, P. O. Box 12253, Qatar

Abstract

In this paper, we introduce a new polynomial invariant of planar (but not spherical) knotoids, which we call the winding signed sum polynomial. This Laurent polynomial invariant of planar knotoids denoted by [Formula: see text] is a type-one Vassiliev invariant. This invariant might tell whether a planar knotoid is a zero-height or nonzero-height planar knotoid. It also might distinguish between a planar knotoid and its inverse, while the affine index polynomial defined by Gügümcü and Kauffman in [New invariants of knotoids, Eur. J. Combin. 65 (2017) 186–229] (that is also a type-one Vassiliev invariant) cannot distinguish between a planar knotoid and its inverse. We also define some geometric invariants of planar knotoids, and give lower bounds for these invariants using the winding signed sum polynomial, which helps in computing these geometric invariants that are easy to define, but hard to calculate.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3