Representations of Flat Virtual Braids by Automorphisms of Free Group

Author:

Chuzhinov Bogdan1,Vesnin Andrey12ORCID

Affiliation:

1. Department of Mechanics and Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia

2. Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract

Representations of braid group Bn on n≥2 strands by automorphisms of a free group of rank n go back to Artin. In 1991, Kauffman introduced a theory of virtual braids, virtual knots, and links. The virtual braid group VBn on n≥2 strands is an extension of the classical braid group Bn by the symmetric group Sn. In this paper, we consider flat virtual braid groups FVBn on n≥2 strands and construct a family of representations of FVBn by automorphisms of free groups of rank 2n. It has been established that these representations do not preserve the forbidden relations between classical and virtual generators. We investigated some algebraic properties of the constructed representations. In particular, we established conditions of faithfulness in case n=2 and proved that the kernel contains a free group of rank two for n≥3.

Funder

Sobolev Institute of Mathematics project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference49 articles.

1. Theorie der Zöpfe;Artin;Abh. Math. Semin Univ. Hambg.,1925

2. Birman, J. (1974). Braids, Links, and Mapping Class Groups, Princeton University Press.

3. Burde, G., and Zieschang, H. (1985). Knots, de Gruyter.

4. Murasugi, K. (1996). Knot Theory and Its Applications, Birkhäuser.

5. Adams, C. (2004). The Knot Book, AMS.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Representations of flat virtual braids which do not preserve the forbidden relations;Journal of Knot Theory and Its Ramifications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3