Affiliation:
1. Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-Universität, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
Abstract
In this paper, a generalized quantization principle for the gravitational field in canonical quantum gravity, especially with respect to quantum geometrodynamics is considered. This assumption can be interpreted as a transfer from the generalized uncertainty principle in quantum mechanics, which is postulated as generalization of the Heisenberg algebra to introduce a minimal length, to a corresponding quantization principle concerning the quantities of quantum gravity. According to this presupposition there have to be given generalized representations of the operators referring to the observables in the canonical approach of a quantum description of general relativity. This also leads to generalized constraints for the states and thus to a generalized Wheeler–DeWitt equation determining a new dynamical behavior. As a special manifestation of this modified canonical theory of quantum gravity, quantum cosmology is explored. The generalized cosmological Wheeler–DeWitt equation corresponding to the application of the generalized quantization principle to the cosmological degree of freedom is solved by using Sommerfelds polynomial method.
Publisher
World Scientific Pub Co Pte Lt
Subject
Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献