Lorentzian vacuum transitions with a generalized uncertainty principle

Author:

García-Compeán HORCID,Mata-Pacheco DORCID

Abstract

Abstract The vacuum transition probabilities between to minima of a scalar field potential in the presence of gravity are studied using the Wentzel–Kramers–Brillouin approximation. First we propose a method to compute these transition probabilities by solving the Wheeler–DeWitt equation in a semi-classical approach for any model of superspace that contains terms of squared as well as linear momenta in the Hamiltonian constraint generalizing in this way previous results. Then we apply this method to compute the transition probabilities for a Friedmann–Lemaitre–Robertson–Walker (FLRW) metric with positive and null curvature and for the Bianchi III metric when the coordinates of minisuperspace obey a Standard Uncertainty Principle and when a Generalized Uncertainty Principle (GUP) is taken into account. In all cases we compare the results and found that the effect of considering a GUP is that the probability is enhanced at first but it decays faster so when the corresponding scale factor is big enough the probability is reduced. We also consider the effect of anisotropy and compare the result of the Bianchi III metric with the flat FLRW metric which corresponds to its isotropy limit and comment the differences with previous works.

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3