Optimization-Based Whole-Body Control of a Series Elastic Humanoid Robot

Author:

Hopkins Michael A.1,Leonessa Alexander1,Lattimer Brian Y.1,Hong Dennis W.2

Affiliation:

1. Terrestrial Robotics, Engineering and Controls Lab (TREC), Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA

2. Robotics and Mechanisms Laboratory (RoMeLa), Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA 90095, United States

Abstract

As whole-body control approaches begin to enter the mainstream of humanoid robotics research, there is a real need to address the challenges and pitfalls encountered in hardware implementations. This paper presents an optimization-based whole-body control framework enabling compliant locomotion on THOR, a 34 degree of freedom humanoid featuring force-controllable series elastic actuators (SEAs). Given desired momentum rates of change, end-effector accelerations, and joint accelerations from a high-level locomotion controller, joint torque setpoints are computed using an efficient quadratic program (QP) formulation designed to solve the floating-base inverse dynamics (ID). Constraints on the centroidal dynamics, frictional contact forces, and joint position/torque limits ensure admissibility of the optimized joint setpoints. The control approach is supported by an electromechanical design that relies on custom linear SEAs and embedded joint controllers to accurately regulate the internal and external forces computed by the whole-body QP. Push recovery and walking tests conducted using the THOR humanoid validate the effectiveness of the proposed approach. In each case, balancing is achieved using a planning and control approach based on the time-varying divergent component of motion (DCM) implemented for the first time on hardware. We discuss practical considerations that led to the successful implementation of low-impedance whole-body control on our hardware system including the design of the robot’s high-level standing and stepping behaviors and low-level joint-space controllers. The paper concludes with an application of the presented approach for a humanoid firefighting demonstration onboard a decommissioned US Navy ship.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3