ON IMPLEMENTING THE FARM SKELETON

Author:

POLDNER MICHAEL1,KUCHEN HERBERT1

Affiliation:

1. Department of Information Systems, University of Münster, D-48149 Münster, Germany

Abstract

Algorithmic skeletons intend to simplify parallel programming by providing a higher level of abstraction compared to the usual message passing. Task and data parallel skeletons can be distinguished. In the present paper, we will consider several approaches to implement one of the most classical task parallel skeletons, namely the farm, and compare them w.r.t. scalability, overhead, potential bottlenecks, and load balancing. We will also investigate several communication modes for the implementation of skeletons. Based on experimental results, the advantages and disadvantages of the different approaches are shown. Moreover, we will show how to terminate the system of processes properly.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-tuning serverless task farming using proactive elasticity control;Cluster Computing;2020-07-23

2. Serverless Skeletons for Elastic Parallel Processing;2019 IEEE 5th International Conference on Big Data Intelligence and Computing (DATACOM);2019-11-18

3. Parallel Programming with Algorithmic Skeletons;The Art of Structuring;2019

4. State access patterns in stream parallel computations;The International Journal of High Performance Computing Applications;2017-03-16

5. Applying semi-synchronised task farming to large-scale computer vision problems;The International Journal of High Performance Computing Applications;2014-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3