Self-tuning serverless task farming using proactive elasticity control

Author:

Kehrer Stefan,Zietlow Dominik,Scheffold Jochen,Blochinger Wolfgang

Abstract

AbstractThe cloud evolved into an attractive execution environment for parallel applications, which make use of compute resources to speed up the computation of large problems in science and industry. Whereas Infrastructure as a Service (IaaS) offerings have been commonly employed, more recently, serverless computing emerged as a novel cloud computing paradigm with the goal of freeing developers from resource management issues. However, as of today, serverless computing platforms are mainly used to process computations triggered by events or user requests that can be executed independently of each other and benefit from on-demand and elastic compute resources as well as per-function billing. In this work, we discuss how to employ serverless computing platforms to operate parallel applications. We specifically focus on the class of parallel task farming applications and introduce a novel approach to free developers from both parallelism and resource management issues. Our approach includes a proactive elasticity controller that adapts the physical parallelism per application run according to user-defined goals. Specifically, we show how to consider a user-defined execution time limit after which the result of the computation needs to be present while minimizing the associated monetary costs. To evaluate our concepts, we present a prototypical elastic parallel system architecture for self-tuning serverless task farming and implement two applications based on our framework. Moreover, we report on performance measurements for both applications as well as the prediction accuracy of the proposed proactive elasticity control mechanism and discuss our key findings.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Serverless Architecture: Scalability, Implementations and Open Issues;2022 6th International Conference on System Reliability and Safety (ICSRS);2022-11-23

2. Correction to: Self-tuning serverless task farming using proactive elasticity control;Cluster Computing;2021-07-20

3. Survey on serverless computing;Journal of Cloud Computing;2021-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3