Applying semi-synchronised task farming to large-scale computer vision problems

Author:

McDonagh Steven1,Beyan Cigdem1,Huang Phoenix X1,Fisher Robert B1

Affiliation:

1. University of Edinburgh, UK

Abstract

Distributed compute clusters allow the computing power of heterogeneous (and homogeneous) resources to be utilised to solve large-scale science and engineering problems. One class of problem that has attractive scalability properties, and is therefore often implemented using compute clusters, is task farming (or parameter sweep) applications. A typical characteristic of such applications is that no communication is needed between distributed subtasks during the overall computation. However, interesting large-scale task farming problem instances that do require global communication between subtask sets also exist. We propose a framework called semi-synchronised task farming in order to address problems requiring distributed formulations containing subtasks that alternate between independence and synchronisation. We apply this framework to several large-scale contemporary computer vision problems and present a detailed performance analysis to demonstrate framework scalability. Semi-synchronised task farming splits a given problem into a number of stages. Each stage involves firstly distributing independent subtasks to be completed in parallel. Following subtask set completion, a set of synchronised global decisions, based on information retrieved from the distributed results, is made. The results influence the following subtask distribution stage. This subtask distribution followed by result collation process is iterated until overall problem solutions are obtained. We construct a simplified Bulk Synchronous Parallel (BSP) model to formalise this framework and with this formalisation, we develop a predictive model for overall task completion time. We present experimental benchmark results comparing the performance observed by applying our framework to solve real-world problems on compute clusters with that of solving the tasks in a serial fashion. Furthermore by assessing the predicted time savings that our framework provides in simulation and validating these predictions on a range of complex problems drawn from real-world computer vision tasks, we are able to reliably predict the performance gain obtained when using a compute cluster to tackle resource intensive computer vision tasks.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3