Low-Resolution Face Recognition of Multi-Scale Blocking CS-LBP and Weighted PCA

Author:

Li Jiadi1,Chen Zhenxue1,Liu Chengyun1

Affiliation:

1. Control Science and Engineering School, Shandong University, Jinan 250061, P. R. China

Abstract

A novel method is proposed in this paper to improve the recognition accuracy of Local Binary Pattern (LBP) on low-resolution face recognition. More precise descriptors and effectively face features can be extracted by combining multi-scale blocking center symmetric local binary pattern (CS-LBP) based on Gaussian pyramids and weighted principal component analysis (PCA) on low-resolution condition. Firstly, the features statistical histograms of face images are calculated by multi-scale blocking CS-LBP operator. Secondly, the stronger classification and lower dimension features can be got by applying weighted PCA algorithm. Finally, the different classifiers are used to select the optimal classification categories of low-resolution face set and calculate the recognition rate. The results in the ORL human face databases show that recognition rate can get 89.38% when the resolution of face image drops to 12[Formula: see text]10 pixel and basically satisfy the practical requirements of recognition. The further comparison of other descriptors and experiments from videos proved that the novel algorithm can improve recognition accuracy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation funded project

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Face Recognition Through Multi-Resolution Images;International Journal of Software Innovation;2022-03-04

2. Face recognition: a novel multi‐level taxonomy based survey;IET Biometrics;2019-12-13

3. Separable property-based super-resolution of lousy image data;Pattern Analysis and Applications;2019-10-24

4. Low-resolution and open-set face recognition via recursive label propagation based on statistical classification;International Journal of Wavelets, Multiresolution and Information Processing;2019-03

5. DCT and HOG Feature Sets Combined with BPNN for Efficient Face Classification;Procedia Computer Science;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3