Affiliation:
1. Faculty of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, P. R. China
Abstract
In video surveillance, the captured face images are usually suffered from low-resolution (LR), besides, not all the probe images have mates in the gallery under the premise that only a single frontal high-resolution (HR) face image per subject. To address this problem, a novel face recognition framework called recursive label propagation based on statistical classification (ReLPBSC) has been proposed in this paper. Firstly, we employ VGG to extract robust discriminative feature vectors to represent each face. Then we select the corresponding LR face in the probe for each HR gallery face by similarity. Based on the picked HR–LR pairs, ReLPBSC is implemented for recognition. The main contributions of the proposed approach are as follows: (i) Inspired by substantial achievements of deep learning methods, VGG is adopted to achieve discriminative representation for LR faces to avoid the super-resolution steps; (ii) the accepted and rejected threshold parameters, which are not fixed in face recognition, can be achieved with ReLPBSC adaptively; (iii) the unreliable subjects never enrolled in the gallery can be rejected automatically with designed methods. Experimental results in [Formula: see text] pixels resolution show that the proposed method can achieve 86.64% recall rate while keeping 100% precision.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献