Affiliation:
1. Department of Automation, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, P. R. China
Abstract
Face hallucination is to synthesize high-resolution face image from the input low-resolution one. Although many two-step learning-based face hallucination approaches have been developed, they suffer from the expensive computational cost due to the separate calculation of the global and local models. To overcome this problem, we propose a correlative two-step learning-based face hallucination approach which bridges the gap between the global model and the local model. In the global phase, we build a global face hallucination framework by combining the steerable pyramid decomposition and the reconstruction. In the residue compensation phase, based on the combination weights and constituent samples obtained in the global phase, a residue face image is synthesized by the neighbor reconstruction algorithm to compensate the hallucinated global face image with subtle facial features. The ultimate hallucinated result is synthesized by adding the residue face image to the global face image. Compared with existing methods, in the global phase, our global face image is more similar to the original high-resolution face image. Furthermore, in the residue compensation phase, we use the combination weights and constituent samples obtained in the global phase to compute the residue face image, by which the computational efficiency can be greatly improved without compromising the quality of facial details. The experimental results and comparisons demonstrate that our approach can not only generate convincible high-resolution face images efficiently, but also has high computational efficiency. Furthermore, our proposed approach can be used to restore the damaged face images in image inpainting. The efficacy of our approach is validated by recovering the damaged face images with visually good results.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献