Predicting compressive strength of geopolymer concrete using machine learning

Author:

Gupta Priyanka1ORCID,Gupta Nakul2ORCID,Saxena Kuldeep K.3ORCID

Affiliation:

1. Department of Civil Engineering, Engineering College Bharatpur, Bharatpur, Rajasthan 321303, India

2. Department of Civil Engineering, GLA University, Mathura, Uttar Pradesh 281406, India

3. Division of Research and Development, Lovely Professional University, Punjab 144411, India

Abstract

The anaconda software required python code in order to run the utilized individual K-nearest neighbor (KNN), random forest regression (RFR), and linear regression (LR) models. The results show that RFR machine learning (ML) technique out of the other utilized models shows the best performance for a used dataset. The findings of this article indicate that the dataset utilized proposed model provides an acceptable algorithm for FACC design and optimization. In the current study of preparation of geopolymer concrete (GPC), relevant variables such as curing, fly ash, calcined clay, added water, super plasticizer, coarse aggregate, quarry stone dust, caustic soda, and water glass were used as input parameters. The ranges, mode, median, standard deviation, and other identifying details were checked using descriptive statistical analysis for the input parameters. The strength due to the compression of FACC GPC was predicted using RFR, LR, and KNN ML techniques, all based on Python coding. The ensemble ML technique, RFR outperformed the individual ML technique, KNN, in terms of prediction. The RFR indicates that the maximum amount of [Formula: see text] is 0.92, and LR provides 0.58, although the KNN was less accurate, with a coefficient of determination of 0.56. The RFR technique’s lower values of errors, mean absolute error (MAE), MSE, and root mean square error (RMSE) yield 1.99, 7.17, and 2.67[Formula: see text]MPa, respectively. The excellent accuracy of the RFR methodology is confirmed by a statistical analysis of errors. Curing temperature, curing hours, molarity of NaOH, and FACC ratio significantly affect the compressive strength (CS) of FACC GPC. The findings indicate that the proposed model provides an acceptable algorithm for FACC design and optimization using RFR among the three combinations of ML methods for a given dataset.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3