A Review of Numerical Simulation and Modeling in High Strain Rate Deformation Processes

Author:

Swamy Sujeeth,Usha P,Meheta Ankit,Al-Fatlawi Mohammed,Thethi H Pal,Pratap Bhishm,Bandhu Din

Abstract

Numerical simulation and modeling play a crucial role in understanding and predicting the behavior of materials subjected to high strain rate deformation processes. These processes involve rapid deformation and loading rates, typically encountered in scenarios such as impact events, explosive detonations, metal forming, and crash simulations. By employing advanced computational techniques, researchers and engineers can gain insights into complex material behavior under extreme loading conditions. This paper provides an overview of numerical simulation and modeling approaches used in studying high-strain rate deformation processes. It discusses the challenges associated with capturing dynamic material response, the development of constitutive models, and the use of finite element analysis and computational fluid dynamics. The paper also highlights the importance of material characterization, model validation, and sensitivity analysis for accurate and reliable simulations. Additionally, it explores the application of numerical simulations in optimizing material properties, designing protective structures, and improving the performance of impact-resistant materials. Overall, this review paper emphasizes the significance of numerical simulation and modeling as powerful tools for advancing the understanding and design of high-strain rate deformation processes.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3