Review of Multiscale Modeling and Simulation Techniques in Metal Forming, Bending, Welding, and Casting Processes for Enhanced Predictive Design and Analysis

Author:

K Gopal,Bhavana G,Kaushik Abhishek,Al-Jawahry Hassan M.,Gupta Lovi Raj,Pahwa Shilpa,Bandhu Din

Abstract

Multiscale modeling and simulation offer crucial insights for designing and analyzing metal forming, bending, welding, and casting processes, all of which are vital across automotive, aerospace, and construction industries. This paper overviews multiscale techniques used in these areas. Macroscopically, continuum-based methods like finite element analysis (FEA) model the overall process and its impact on metal materials. FEA reveals deformation, stress distribution, and temperature changes during manufacturing processes. Mesoscale techniques, including crystal plasticity, phase field methods, and cellular automata, focus on microstructural evolution and mechanical properties. They model the behavior of grains and phases within the metal. These models combine macro and mesoscale data for accuracy. This allows for the prediction of grain growth, recrystallization, and phase transformations – critical for optimizing processes, refining component design, and ensuring quality. For example, multiscale modeling successfully captured microstructural evolution during casting (demonstrating ±2% average grain growth deviation) and predicted defect formation in welded joints with high accuracy (demonstrating a 0.95 correlation coefficient with non-destructive testing).

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3