Affiliation:
1. Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China
2. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing 210044, P. R. China
Abstract
Bromobenzene is one of the organic pollutants that damage the natural environment and poses a serious threat to human health. Therefore, it is meaningful to study its degradation characteristics under the electric field. In this paper, density functional theory (DFT) at BPV86/6-311G (d, p) level are employed for the study of C–Br bond distance, total energy, charge distribution, dipole moment, lowest unoccupied molecular orbital (LUMO) level, highest occupied molecular orbital (HOMO) level, energy gap and potential energy surface (PES) of bromobenzene in external electric field ([Formula: see text]15.43[Formula: see text]V[Formula: see text][Formula: see text][Formula: see text]nm[Formula: see text]–15.43[Formula: see text]V[Formula: see text][Formula: see text][Formula: see text]nm[Formula: see text]). It shows that as the electric field increases, the C–Br bond tends to break. The changes in the HOMO level and the LUMO level result in a rapid drop in the energy gap. In addition, the dissociation barrier gradually decreases. When the applied electric field reaches 15.43[Formula: see text]V[Formula: see text][Formula: see text]nm[Formula: see text], the dissociation barrier disappears completely, which means that the C–Br bond is broken and bromobenzene is degraded.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献