Cytotoxic Effects of a Novel Thialo Benzene Derivative 2,4-Dithiophenoxy-1-iodo-4-bromobenzene (C18H12S2IBr) in L929 Cells

Author:

Süloğlu Aysun Kılıç1,Karacaoğlu Elif1,Koçkaya Evrim Arzu2,Selmanoğlu Güldeniz1,Loğoglu Elif3

Affiliation:

1. Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, Turkey

2. The Higher Vocational School of Health Services, Gazi University, Gölbaşı Campus, Ankara, Turkey

3. Department of Chemistry, Faculty of Arts and Sciences, Gazi University, Technical Schools, Ankara, Turkey

Abstract

The aim of this study was to compare the cytotoxic effects of a newly synthesized thialo benzene derivative 2,4-dithiophenoxy-1-iodo-4-bromobenzene (C18H12S2IBr) and a well-known antifungal agent, fluconazole, in L929 cells. L929 cells were treated with 250, 500, or 1000 µg/mL of C18H12S2IBr and with the same doses of fluconazole. Cytotoxicity tests including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH) leakage, and protein content were compared. Glucose and lactate concentrations were measured to determine alterations in metabolic activity. Apoptosis was investigated by TUNEL test and results were supported with survivin enzyme-linked immunosorbent assay. Treatment with C18H12S2IBr resulted in a concentration-dependent cytotoxicity as indicated by MTT, LDH leakage assay, and decreased protein concentration. The loss of cell viability and the increased LDH leakage in 500 µg/mL and 1000 µg/mL C18H12S2IBr and fluconazole groups indicated cell membrane damage and necrotic cell death. In all groups, metabolic activities were altered but apoptosis was not induced. We have previously investigated lower doses of C18H12S2IBr; there was no cytotoxicity in L929 cells. In this study, higher doses caused cytotoxicity and alterations in metabolic activity . When we consider the similar results obtained from fluconazole and especially the lowest dose of C18H12S2IBr, this newly synthesized compound may be a good alternative antifungal agent.

Publisher

SAGE Publications

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3