Affiliation:
1. School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong People's Republic of China
2. College of Pharmacy, Qilu Medical University Zibo Shandong People's Republic of China
Abstract
AbstractDue largely to the high stability and the potential ozone‐depleting, the transformation of greenhouse gas nitrous oxide has gained much attentions. In present paper, a new insight into the deoxygenation of nitrous oxide with silane was reported by using oriented external electric field (OEEF) as a catalytic strategy. When the OEEF was employed, the reaction barrier of deoxygenation was marvelously decreased as it was oriented along the positive NO/OSi bond‐axis. Especially the field strength is 300 × 10−4 a.u., the differences are up to 22.4/18.3 kcal mol−1 as compared with that of nonfield. In addition, once the H atom in SiH4 was replaced by methyl, two reaction modes were obtained, in which the deoxygenation process was easier when the N2O captured the H atom attached to the Si atom, not attached to the C atom. Further, the solvent effects of deoxygenation reaction were also considered, but with a weak influence were obtained.
Funder
Natural Science Foundation of Shandong Province