1/f NOISE DUE TO ATOMIC DIFFUSION OF IMPURITY CENTERS IN SEMICONDUCTORS

Author:

GRÜNEIS FERDINAND1

Affiliation:

1. Institut für Angewandte Stochastik, Friedrich-Herschelstr. 4, 81679 München, Germany

Abstract

Atomic diffusion of impurity centers is investigated as a possible origin of 1/f noise in semiconductors. Following the trace of an individual impurity center, the noise produced at a certain site is calculated; due to diffusion of centers this is an intermittent process. Besides generation-recombination (= g-r) noise, an excess noise is obtained which is attributed to diffusion of impurity centers. This excess noise exhibits 1/f noise and g-r burst noise. 1/f noise is attributed to the return time of a center to the origin; g-r burst noise is the noise produced by centers residing at a certain site. For a n-type strongly extrinsic semiconductor, the Hooge coefficient α of the present model is derived and impact of compensating acceptors or additional doping by shallow centers is investigated. Increasing the concentration of additional shallow centers α is decreased; an increase of concentration of compensating acceptors results in an increase of α. The temperature dependence of the Hooge coefficient α(T) is calculated and is compared with empirical findings.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3