Detection of Brain Tumor in MRI Images Using Optimized ANFIS Classifier

Author:

Kalam Rehna1,Thomas Ciza2,Rahiman M. Abdul3

Affiliation:

1. Department of Computer Science and Engineering, University of Kerala, India

2. Department of Electronics and Engineering, College of Engineering, Trivandrum, India

3. Department of Computer Science and Engineering, LBS ITW, Trivandrum, India

Abstract

Tumor is basically a most common disease of brain and the Brain Tumor (BT) treatment has crucial significance. A diagnostic procedure called MRI image that is employed for detecting BT. It is the utmost important and intricate tasks in numerous medical-image applications since it typically involves a huge quantity of data. A lot of methods were applied in BT detection ranging as of image processing to examine the BT; however, the prevailing BT technique is tedious and less effective. So, this paper proposed the detection of the BT in MRI images utilizing optimized ANFIS classifier. Originally, the input MR image is preprocessed utilizing Gaussian Filter (GF) that removes the noise from the inputted image, additionally, the non-brain tissues (NBT) are removed using the technique of skull stripping (SS). After that, segmentation is performed wherein the tumor part is segmented utilizing CBAC technique and edema part is segmented utilizing HLSS segmentation technique. Then, GLCM in addition to GLRLM features are extracted afterward that extorted features is chosen by BFO algorithm. Finally, the selected features inputted to the optimized ANFIS classifier that classifies the tumor class types as Meningioma, Glioma, along with Pituitary. In ANFIS, the optimization procedure is achieved utilizing the PSO. The proposed system’s performance is contrasted to the prevailing systems regarding precision, recall, specificity, sensitivity, accuracy, together with F-Measure.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2024-05

2. Segmentation for Multimodal Brain Tumor Images Using Dual-Tree Complex Wavelet Transform and Deep Reinforcement Learning;Computational Intelligence and Neuroscience;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3