Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data

Author:

Ouifak Hafsaa1ORCID,Afkhkhar Zaineb1,Manzi Alain Thierry Iliho1,Idri Ali12

Affiliation:

1. Mohammed VI Polytechnic University, Ben Guerir, Morocco

2. ENSIAS, Mohammed V University, Rabat, Morocco

Abstract

Neuro-fuzzy techniques have been widely used in many applications due to their ability to generate interpretable fuzzy rules. Ensemble learning, on the other hand, is an emerging paradigm in artificial intelligence used to improve performance results by combining multiple single learners. This paper aims to develop and evaluate a set of homogeneous ensembles over four medical datasets using hyperparameter tuning of four neuro-fuzzy systems: adaptive neuro-fuzzy inference system (ANFIS), Dynamic evolving neuro-fuzzy system (DENFIS), Hybrid fuzzy inference system (HyFIS), and neuro-fuzzy classifier (NEFCLASS). To address the interpretability challenges and to reduce the complexity of high-dimensional data, the information gain filter was used to identify the most relevant features. After that, the performance of the neuro-fuzzy single learners and ensembles was evaluated using four performance metrics: accuracy, precision, recall, and f1 score. To decide which single learners/ensembles perform better, the Scott-Knott and Borda count techniques were used. The Scott-Knott first groups the models based on the accuracy to find the classifiers appearing in the best cluster, while the Borda count ranks the models based on all the four performance metrics without favoring any of the metrics. Results showed that: (1) The number of the combined single learners positively impacts the performance of the ensembles, (2) Single neuro-fuzzy classifiers demonstrate better or similar performance to the ensembles, but the ensembles still provide better stability of predictions, and (3) Among the ensembles of different models, ANFIS provided the best ensemble results.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3